Support and Associated primes

Algebra Mutivation:

let n be an integer.

We can write its unique prime factorization as

$$n = \pm p_i^{d_i} \cdots p_t^{d_t}.$$

In fact, in \mathcal{R} , $(n) = (p_i^{d_i}) \cap \dots \cap (p_t^{d_t})$.

We will see that the "associated primes" of (n) are the (p_i) and the primary components of (n) are the $(p_i^{d_i})$.

We will use truse concepts to generalize the unique factorization of integers to arbitrary rings.

Geometric motivation:

let $R = k[x_1, ..., x_n]$, and $I \subseteq R$ on ideal.

Def: The closed set V(I) is <u>reducible</u> if it can be whitten V(I) = V(I')UV(I'') where V(I) is not equal to V(I') or V(I').

Otherwise V(I) is irreducible.

Claim: V(I) is irreducible (=) /I is prime.

 $\frac{Pf}{I} \quad |f \quad \sqrt{I} \quad i_{\mathcal{S}} \quad prime, \quad suppose \\ \vee (I) = \vee (\sqrt{I}) = \vee (J_1) \cup \vee (J_2)$

Then WLOG, $\sqrt{\mathbf{I}} \in V(\mathbf{J},)$, so $V(\sqrt{\mathbf{I}}) \subseteq V(\mathbf{J},)$ $\Rightarrow V(\mathbf{I}) = V(\mathbf{J},)$

So V(I) is irreducible.

If \sqrt{I} is <u>not</u> prime, take $f, g \notin \sqrt{I}$ s.t. $fg \in \sqrt{I}$. Then if $P \in V(\sqrt{I})$, $fg \in P \Longrightarrow f \in P$ or $g \in P$.

So
$$V(I) = V(f, \sqrt{I}) \cup V(g, \sqrt{I})$$
, neither of which is
equal to $V(I)$, since $\sqrt{I} = \bigcap_{\substack{p>1\\prime}} P \neq f, g$. \square

If I is radical, we will see that it can actually be written as a finite intersection of prime ideals in a unique minimal way. This is the "primary decomposition" of I and is equivalent to writing V(I) in the unique minimal way of the union of closed sets.

The situation is more complicated if I is not radical:

$$\underline{\mathsf{E}} \mathsf{X}$$
: Define $\mathbf{I} := (x^2, xy) \subseteq k[x, y]$.

Notice that $T = (x) \cap (x^2, y)$.

Geometrically, the "scheme" V(I) is (roughly) the line x=0 w/ additional structure (i.e. a tangent direction) at the origin.

We will see, purely algebraically, that This is reflected in the associated primes, which are (x) and (x,y).

However, we can write
$$I = (\pi) \cap (\pi^2, y)$$
 or $I = (\pi) \cap (\pi^2, \pi y, y^2)$
radical= (x, y) radical= (x, y)

So the description as the intersection of ideals whose radicals are the associated primes is <u>not</u> unique.

Support of a module

Recall that we showed $M = 0 \iff M_m = 0 \forall max'l m \subseteq R$.

Also notice that if PESupp M and QEV(P), then the following commutes:

and $M_p \neq 0 \implies M \neq 0$, so $M_Q \neq 0$ and thus $V(P) \subseteq Supp(M)$.

EX: If ICR is an ideal, let M=R/I. What is SuppM?

If $P \in R$ is prime, Then $M_p \stackrel{\sim}{=} \frac{R_p}{IR_p}$,

which is $O \iff IR_p$ contains a unit $\iff I \not = P$.

Thus,
$$\sup (R/I) = V(I) \subseteq \operatorname{Spec} R$$
.

More generally, we can give the following description of SuppM:

Prop: If M is finitely generated, then
Supp
$$M = V(Ann M) \subseteq Spec R.$$

Pf: Suppose M is generated by $m_{1,...,m_n}$. Then $r \in Ann(M) \iff r \in Ann(m_i)$ for each *i*.

Thus
$$Ann(M) = \bigcap_{i=1}^{m} Ann(m_i)$$
.

So
$$P \in Supp(M) \iff Ann(m;) \subseteq P$$
 for some i.
 $\iff P \in \bigcup_{i} \vee (Ann(m;)) = \vee ((Ann(m;)))$
 $= \vee (Ann(M))$. D

Note that finite generation is necessary:

$$\underbrace{\mathsf{EX}}_{\mathsf{p} \neq \mathsf{O}} \quad \underbrace{\mathsf{Let}}_{\mathsf{p} \neq \mathsf{O}} \qquad \underbrace{\mathsf{M}}_{\mathsf{p} \neq \mathsf{O}} \qquad \underbrace{\mathsf{M}}_{\mathsf{p} \neq \mathsf{O}} \qquad \underbrace{\mathsf{M}}_{\mathsf{p} \neq \mathsf{O}} \qquad \underbrace{\mathsf{M}}_{\mathsf{p} = \bigoplus \left(\frac{7}{4} \right)_{\mathsf{Q}} }$$

So Supp M =
$$\bigcup$$
 Supp $\left(\frac{7}{p}\right) = \bigcup \left\{ \left(p\right) \right\} = \operatorname{Spec} \left(\frac{7}{p}\right) \left\{ \left(p\right) \right\} = \left(p\right) =$

which is not closed.

Associated Primes

Def: A prime P of R is associated to M if there is some $x \in M$ if. $P = Ahn(x) = \{r \in R | r x = 0\}$.

The set of all primes associated to M is denoted Ass, M, or just Ass M if the ring is clear.

Cantion: sometimes the associated primes of R/I over R are just called the associated primes of I.

Remark: If
$$P \in Ass M$$
, then $P = A \ln(x)$, so
 $R \xrightarrow{\cdot x} M$ has kernel P , so $R'_P \cong a$ submodule
of M .

Conversely, if P is some prime ideal s.t. $P_{p} \hookrightarrow M$ as modules, then P is the annihilator of the image of l. That is:

Ex: If R is an integral domain, then Ass_R R = {(0)}.

Claim: For any R-module M, we have
Ass
$$M \subseteq Supp M$$
.
Pf: Suppose $P \in Ass M$. Then we have an injection
 $R'_{P} \longrightarrow M$

Localizing preserves injections, so

$$\begin{pmatrix} \mathsf{R}_{\rho} \end{pmatrix}_{\rho} \hookrightarrow \mathsf{M}_{\rho} \implies \mathsf{M}_{\rho} \neq \mathcal{O} \Rightarrow \mathsf{PeSuppM}. \square$$

Ex: let
$$R = C[x, y]$$
 and $M = C[x, y]$.

$$\sup \mathcal{M} = \mathcal{V}(x^2, xy) = \mathcal{V}(x) = \{(x)\} \cup \{(x, y-a)\}$$

Which of these is in AssM? $f \in Ann(x) \iff fx = ax^2 + bxy = x(ax + by)$ $\iff f = ax + by (since (b(x,y)) is$ an integral domain) $\iff f \in (x,y).$

Similarly, $f \in Ann(y) \Longrightarrow fy = ax^2 + bxy$ $\Longrightarrow ax^2 = fy - bxy = y(f - bx)$ Since C[x,y] is a UFD, a = a'y.

So
$$fy = y(a'x^2 + bx)$$

 $\implies f \in (x).$
Conversely, $x \in Ann(y)$, so $Ann(y) = (x).$

We will see that these are the only two associated primes

Now we state some important results about associated primes

Theorem: let R be a Noetherian ring and M = O a finitely generated R-module. Then

a.) AssM is finite and nonempty, each containing Ann(M). It includes all primes minimal among those containing AnnM.

We'll prove This in the next section after a few lemmas.

<u>Remark</u>: Why com we find primes minimal over om ideal? Let $\{Q_i\}$ be a chain of prime ideals containing I. Then if $ab \in \bigcap Q_i$, a or b is in all Q_i , so $\bigcap Q_i$ is prime.

That is, every chain has a lower bound, so Zorn's Lemma implies that There exist minimal primes over I.

(Note that This holds for even non-Noetherian rings!).

Def: The primes in AssM that are not minimal are called embedded primes of M.

If
$$M = \frac{R}{I}$$
, then if P is an embedded prime in R,
V(P) is called an embedded component of Spec $\left(\frac{R}{I}\right)$.

If P is a minimal associated prime, V(P) is an <u>isolated</u> component of Spec $\binom{R}{I}$.

Ex: In the $I = (xy, x^2)$ example, (x) is an isolated component and (x, y) on embedded component.

embedeled component