Support and Associated primes

Algebra Motivation:
Let $n$ be an integer.
We can write its unique prime factorization as

$$
n= \pm p_{1}^{d_{1}} \cdots p_{t}^{d_{t}}
$$

In fact, in $\pi,(n)=\left(p_{1}^{d_{1}}\right) \cap \ldots \cap\left(p_{t}^{d_{t}}\right)$.
We will see that the "associated primes" of $(n)$ are the $\left(p_{i}\right)$ and the primary components of $(n)$ are the $\left(p_{i}^{d_{i}}\right)$.

We will use these concepts to generalize the unique factorization of integers to arbitrary rings.

Geometric motivation:
Let $R=k\left[x_{1}, \ldots, x_{n}\right]$, and $I \subseteq R$ an ideal.

Def: The closed set $V(I)$ is reducible if it can be written $V(I)=V\left(I^{\prime}\right) \cup V\left(I^{\prime \prime}\right)$ where $V(I)$ is not equal to $V\left(I^{\prime}\right)$ or $V\left(I^{n}\right)$.

Otherwise $V(I)$ is irreducible.

Claim: $V(I)$ is irreducible $\Leftrightarrow \sqrt{I}$ is prime.

Pf: If $\sqrt{I}$ is prime, suppose

$$
V(I)=V(\sqrt{I})=V\left(J_{1}\right) \cup V\left(J_{2}\right)
$$

Then $W L O G, \quad \sqrt{I} \in V\left(J_{1}\right)$, so $V(\sqrt{I}) \subseteq V\left(J_{1}\right)$

$$
\Rightarrow V(I)=V\left(J_{1}\right)
$$

So $V(I)$ is irreducible.

If $\sqrt{I}$ is not prime, take $f, g \notin \sqrt{I}$ s.t. $f g \in \sqrt{I}$.

Then if $P \in V(\sqrt{I}), \quad f g \in P \Rightarrow f \in P$ or $g \in P$.

So $V(I)=V(f, \sqrt{I}) \cup V(g, \sqrt{I})$, neither of which is equal to $V(I)$, since $\quad \sqrt{I}=\bigcap_{\substack{p J I \\ \text { prime }}} P \not \not f f, g$.

If $I$ is radical, we will see that it can actually be written as a finite intersection of prime ideals in a unique minimal way. This is the "primary decomposition" of $I$ and is equivalent to writing $V(I)$ in the mique minimal way of the union of closed sets.

The situation is more complicated if $I$ is not radical:

Ex: Define $I:=\left(x^{2}, x y\right) \subseteq k[x, y]$.

Notice that $I=(x) \cap\left(x^{2}, y\right)$.

Geometrically, the "scheme" $V(I)$ is (roughly) the lime $x=0 \mathrm{w} /$ additional structure (i.e. a tangent direction) at the origin.


We will see, purely algebraically, that this is reflected in the associated primes, which are $(x)$ and $(x, y)$.

However, we can rurite $I=(x) \cap\left(x^{2}, y\right)$ or $I=(x) \cap\left(x^{2}, x y, y^{2}\right)$ radical $=(x, y) \quad$ radical $=(x, y)$

So the description as the intersection of ideals whose radicals are the associated primes is not unique.

Support of a module

Let $M$ be an $R$-module.

Def: The support of $M$ is the subset

$$
\operatorname{Supp} M:=\left\{P \in \operatorname{Spec} R \mid M_{p} \neq 0\right\} \subseteq \operatorname{Spec} R .
$$

Recall that we showed $M=0 \Leftrightarrow M_{m}=0 \forall m a x^{\prime} l$ $m \subseteq R$.

However $M=0 \Rightarrow M_{p}=0 \quad \forall$ primes $P \subseteq R$, which implies $M_{m}=0 \forall$ maxi $m \subseteq R$, so one can replace "maximal" with "prime." That is,

$$
\text { Supp } M=\varnothing \quad \Leftrightarrow \quad M=0
$$

Also notice that if $P \in \operatorname{Supp} M$ and $Q \in V(P)$, then the following commutes:

and $M_{p} \neq 0 \Rightarrow M \neq 0$, so $M_{Q} \neq 0$ and thus $V(P) \subseteq \operatorname{Supp}(M)$.

Ex: If $I \subseteq R$ is an ideal, let $M=R / I$.
What is Supp?

If $P \subseteq R$ is prime, then

$$
M_{p} \cong R_{p} / I R_{p}
$$

which is $0 \Longleftrightarrow I R_{p}$ contains a unit $\Longleftrightarrow I \not \subset P$.

Thus, $\operatorname{supp}(R / I)=V(I) \subseteq \operatorname{Spec} R$.

More generally, we can give the following description of Supp $M$ :

Prop: If $M$ is finitely generated, then

$$
\operatorname{Supp} M=V(\operatorname{Ann} M) \subseteq \operatorname{Spec} R
$$

Pf: Suppose $M$ is generated by $m_{1}, \ldots, m_{n}$.
Then $r \in \operatorname{Ann}(M) \Longleftrightarrow r \in \operatorname{Ann}\left(m_{i}\right)$ for each $i$.
Thus $\operatorname{Ann}(M)=\bigcap_{i=1}^{n} \operatorname{Ann}\left(m_{i}\right)$.
$P \notin \operatorname{Supp}(m) \Leftrightarrow$ for each $i, \exists u_{i} \notin P$ sst. $u_{i} m_{i}=0$

$$
\Leftrightarrow \operatorname{Ann}\left(m_{i}\right) \notin P \quad \forall m_{i}
$$

So $P \in \operatorname{Supp}(M) \Leftrightarrow \operatorname{Ann}\left(m_{i}\right) \subseteq P$ for some $i$.

$$
\begin{aligned}
\Leftrightarrow P \in \bigcup_{i} \vee\left(\operatorname{Ann}\left(m_{i}\right)\right) & =V\left(\cap \operatorname{Ann}\left(m_{i}\right)\right) \\
& =V(\operatorname{Ann}(M)) .
\end{aligned}
$$

Note that finite generation is necessary:

Ex: Let $M=\underset{p \neq 0}{\oplus} \pi /(p)$. Then for $Q \in S_{p e c} \pi$

$$
M_{p}=\Theta(\pi /(p))_{Q}
$$

So $\operatorname{Supp} M=\bigcup_{p} \operatorname{supp}(\pi /(p))=U\{(p)\}=\operatorname{spec} \pi \backslash\{(0)\}$, which is not closed.

Associated Primes

Def: A prime $P$ of $R$ is associated to $M$ if there is some $x \in M$ cit. $P=\operatorname{Ann}(x)=\{r \in R \mid r x=0\}$.

The set of all primes associated to $M$ is denoted $A s_{R} M$, or just Ass if the ring is clear.

Caution: Sometimes the associated primes of $R / I$ over $R$ are just called the associated primes of $I$.

Remark: If $P \in \operatorname{Ass} M$, then $P=A_{n n}(x)$, so
$R \xrightarrow{\cdot x} M$ has kernel $P$, so $R / P \cong a$ submodule
Conversely, if $P$ is some prime ideal st. $R / P \hookrightarrow M$ as modules, then $P$ is the annihilator of the image of 1 .

That is:
$P$ is an associated $\Leftrightarrow R / P$ is isomorphic to a prime of $M \Leftrightarrow$ submodule of $M$.

Ex: If $R$ is an integral domain, then $A s s_{R} R=\{(0)\}$.

Claim: For any $R$-module $M$, we have

$$
\text { Ass } M \subseteq \text { Supp } M
$$

Pf: Suppose $P \in A s s M$. Then we have an injection

$$
R / P \longleftrightarrow M
$$

Localizing preserves injections, so

$$
(R / p)_{p} \hookrightarrow M_{p} \Rightarrow M_{p} \neq 0 \Rightarrow p \in \operatorname{Supp} M .
$$

Ex: Let $R=\mathbb{C}[x, y]$ and $M=\mathbb{C}[x, y] /\left(x^{2}, x y\right)$.

$$
\operatorname{supp} M=V\left(x^{2}, x y\right)=V(x)=\{(x)\} \cup\{(x, y-a)\}
$$

Which of these is in Ass?

$$
\begin{aligned}
f \in \operatorname{Ann}(x) & \Leftrightarrow f x=a x^{2}+b x y=x(a x+b y) \\
& \Leftrightarrow f=a x+b y \text { (since } \mathbb{C}[x, y] \text { is }
\end{aligned}
$$ an integral domain)

$$
\Leftrightarrow f \in(x, y)
$$

$$
\begin{aligned}
\text { Similarly, } f \in \operatorname{Ann}(y) & \Rightarrow f y=a x^{2}+b x y \\
& \Rightarrow a x^{2}=f y-b x y=y(f-b x)
\end{aligned}
$$

Since $\mathbb{C}[x, y]$ is $a$ MFD, $a=a^{\prime} y$.

So $f_{y}=y\left(a^{\prime} x^{2}+b x\right)$

$$
\Rightarrow f \in(x)
$$

conversely, $x \in \operatorname{Ann}(y)$, so $\operatorname{Ann}(y)=(x)$.
We will see that these are the only two associated primes.

Now we state some important results about associated primes

Theorem: Let $R$ be a Noetherian ring and $M \neq 0$ a finitely generated $R$-module. Then
a.) Ass is finite and nonempty, each containing Ann $(M)$. It includes all primes minimal among those containing An nM.
b.) $\bigcup_{P \in A_{\text {ss }} M} P=\left\{\begin{array}{c}\text { zerodivisors on } M\} \cup\{0\} \\ r \in R \text { ".t. } r m=0\end{array}\right.$ $r \in R$ s.t. $r m=0$
for some $m \neq 0$ in $M$.

We'll prove this in the next section after a few lemmas.

Remark: Why can we find primes minimal over an ideal?
Let $\left\{Q_{i}\right\}$ be a chain of prime ideals containing I.
Then if $a b \in \bigcap Q_{i}$, $a$ or $b$ is in all $Q_{i}$, so $\bigcap Q_{i}$ is prime.

That is, every chain has a lower bound, so Zorn's Lemma implies that there exist minimal primes over $I$.
(Note that this holds for even non-Noetherian rings!).

Def: The primes in Ass that are not minimal are called embedded primes of $M$.

If $M=R / I$, thun if $P$ is an embedded prime in $R$, $V(P)$ is called an embedded component of $\operatorname{Spec}(R / I)$.

If $P$ is a minimal associated prime, $V(P)$ is an isolated component of $\operatorname{spec}(R / T)$.

Ex: In the $I=\left(x y, x^{2}\right)$ example, $(x)$ is an isolated component and $(x, y)$ an embedeled component.
isolated
component

Tembedeled component

